Risking Other People’s Money: Gambling, Limited Liability, and Optimal Incentives

Peter DeMarzo, Dmitry Livdan, Alexei Tchistyj

Stanford University
U.C. Berkeley
Motivation

• Financial meltdown 2008
 • Ex ante unlikely outcome
 • Ex post AIG, Lehman, Citi, Merrill Lynch, etc. suffered high losses
 • Losses were caused by divisions trading highly risky securities
 • Investors were unable to either monitor or understand actions taken by managers

• Managers enjoy limited liability and their compensation is performance based
Moral Hazard and Optimal Contracting

- Managers may seek private gain by taking on *tail risk*
 - Earn bonuses based on short-term gains
 - Put firm at risk of rare disasters
 - Limited liability leaves them insufficiently exposed to downside risk
 - Is this the result of inefficient contracting?

- Standard contracting models
 - Focus on effort provision
 - Static and dynamic models
 - Rewards for high cash flows can be optimal
 - But does this contract lead to excessive risk-taking?
One-Period Model

• Principal/Investor(s)
 • Risk-neutral
 • Owns the company
 • Value of the company without project is A (large)

• One period risky project with payoff:

\[
Y(q) = \begin{cases}
1, & \text{with probability } \mu + q\rho \\
0, & \text{with probability } 1 - \mu - q(\rho + \delta). \\
-D, & \text{with probability } q\delta
\end{cases}
\]

• Project risk
 • Low risk $q = 0$
 • High risk $q = 1$
 • High risk is suboptimal: $\rho - \delta D < 0$
One-Period Model

- Principal hires agent/manager to run the project

- New output Y, subject to two-dimensional agency problem:
 - Divert output / shirk for private benefit (λ)
 - Gamble ($\rho < \delta D$)

- How does the possibility of gambling affect contracting?
One-Period Model

- Contract specifies payoffs \((w_0, w_1, w_d)\)
 - \(w_d = 0\)
 - \(w_1 \geq w_0 + \lambda\)

- No Gambling:
 - \(\rho (w_1 - w_0) \leq \delta w_0 \iff w_0 \geq \rho \lambda / \delta\)
 - Agent must receive sufficient rents to prevent gambling
 - Exp. payoff \(= w_0 + \mu \lambda \geq \rho \lambda / \delta + \mu \lambda = \lambda (\mu + \rho / \delta) \equiv w_s\)

- Gambling:
 - Reduce agent rents: \(w_0 \geq 0\)
 - Exp. payoff \(= w_0 + (\mu + \rho) \lambda \geq \lambda (\mu + \rho) \equiv w_g < w_s\)
 - Suffer expected loss: \(\delta D - \rho \equiv \Delta\)
One-Period Model

- Low risk is more profitable to principal than high risk if
 \[\mu - w^s \geq \mu - \Delta - w^g \]
 \[\Delta \geq \lambda \left(\frac{\rho}{\delta} - \rho \right) \]
 - For small \(\delta \) principal would prefer to implement high risk project or not to undertake any project

- Gambling is more costly to prevent when probability of disaster is low
 - Limited liability prohibits harsh punishment of agent for gambling,
 - Expected loss \(\delta w_0 \) is low when \(\delta \) is low,
 - Unless agent’s compensation \(w_0 \) and \(w^s \) are high
Contract Conditional on Disaster

• If we cannot punish agent for gambling it may be cheaper to reward him for not gambling ex post

• Can the agent be rewarded for not gambling ex post?
 • Oil spills
 • Absence does not mean gambling did not occur – perhaps we just got lucky?
 • Earthquakes
 • If the building survives an earthquake, that is evidence that the builder did not cut corners
 • Financial crisis
 • If a bank survives it while other banks fail, that is evidence that the bank did not gamble
Bonus for not Gambling

- No gambling: pay bonus b if no loss ($-D$) given disaster
 \[\rho (w_1 - w_0) \leq \delta (w_0 + b) \]

- Contract without gambling that maximizes principal payoff:
 \[w_d = 0, \ w_0 = 0, \ w_1 = \lambda, \ b = \lambda \frac{\rho}{\delta}. \]

- Bonus b may be large, but expected bonus payment is not
 \[\delta b = \lambda \rho \]

- Exp. payoff for Agent $= \lambda \mu + \delta b = \lambda \mu + \rho \lambda \equiv w^g$

- In that case, no gambling is always optimal
Implementation Using Put Options

• Agent is given out-of-money put options on companies that are likely to be ruined in the "disaster" state
 • Caveat: Agent can collect the payoff from the options only if his company remains in a good shape

• Potential downside of using put options
 • Creates incentives to take down competitors

• Comprehensive cost-benefit analysis is needed
Dynamic Model

- A simple model (DS 2006)
 - Cumulative cash flow: \(dY = \mu \, dt + \sigma \, dZ \)
 - Agent can divert cash flows and consume fraction \(\lambda \in (0, 1] \)
 - Alternative interpretation: drift \(\mu \) depends on agent’s effort
 - Earn private benefits at rate \(\lambda \) per unit reduction in drift

- Gambling with tail risk
 - Gambling raises drift to \(\mu + \rho \): \(dY = (\mu + \rho) \, dt + \sigma \, dZ \)
 - Disaster arrives at rate \(\delta \), destroying the franchise and existing assets \(D \) if the agent gambled
Basic Agency Problem

- Interpretations
 - Cash Flow Diversion
 - Costly Effort (work/shirk)

Diagram showing cumulative output per unit over time with a linear trendline indicating diverted funds.
The Contracting Environment

- Agent reports cash flows
- Contract specifies, as function of the history of cash flows:
 - The agent’s compensation \(dC_t \geq 0 \)
 - Termination / Liquidation
 - Agent’s outside option = 0
 - Investors receive value of firm assets, \(L < \mu/r \)
- Contract curve / value function:
 \[p(w) = \max \text{ investor payoff given agent’s payoff } w \]
 - Provide incentives via cash \(dC_t \) or promises \(dw_t \)
 - Tradeoff: Deferring compensation eases future IC constraints, but costly given the agent’s impatience
Solving the Basic Model

- First-Best Value Function
 \[p^{FB}(w) = \frac{\mu}{r} - w \]

- Basic Properties
 - Positive payoff from stealing/shirking
 \[\Rightarrow p(0) = L \]
 - Public randomization
 \[\Rightarrow p(w) \text{ is weakly concave} \]
 - Liquidation is inefficient
 \[\Rightarrow p(w) + w \leq \frac{\mu}{r} \]

- Cash Compensation
 \[\Rightarrow p'(w) \geq -1 \]
 - Pay cash if \(w > w^c \)
 - Use promises if \(w \leq w^c \)
Basic Model cont’d

- Agent’s Future Payoff w
 - Promise-keeping
 - $E[dw] = \gamma \ w \ dt$
 - Incentive Compatibility
 - $\partial w / \partial y \geq \lambda$

 $\Rightarrow \ dw = \gamma \ w \ dt + \lambda \ (dy - E[dy])$

 $= \gamma \ w \ dt + \lambda \ \sigma \ dZ$

- Investor’s Payoff: HJB Equation

\[rp = \mu + \gamma \ w p' + \frac{1}{2} \lambda^2 \sigma^2 p'' \]

Boundary Conditions:
- Termination: $p(0) = L$
- Smooth pasting: $p'(w^c) = -1$
- Super contact: $p''(w^c) = 0$

\[p(w^c) + w^c = \frac{\mu - (\gamma - r) \ w^c}{r} \]

Agent’s Payoff w
The Gambling Problem

- Agent may increase profits by taking on tail risk
 - E.g. selling disaster insurance / CDS / deep OTM puts – earn $\rho \, dt$
 - Risk of disaster that wipes out franchise – arrival rate $\delta \, dt$, loss D
The Gambling Problem

• Agent’s incentives
 • Gain from gambling: $\lambda \rho \, dt$
 • Potential loss: w_t, with probability $\delta \, dt$
 • Agent will gamble if $\lambda \rho > \delta w_t$ or
 $$w_t < w^s \equiv \frac{\lambda \rho}{\delta}$$
 • Agent will gamble if not enough “skin in the game”

• Gambling region
 • Contract dynamics: $dw = (\gamma + \delta) w \, dt + \lambda (dy - E[dy])$
 • Value function: $(r + \delta) p^g = (\mu + \rho - \delta D) + (\gamma + \delta) wp^g' + \frac{1}{2} \lambda^2 \sigma^2 p^g''$
 • Increased impatience
 • Smooth pasting: $p(w^s) = p^g(w^s), \quad p'(w^s) = p^g'(w^s)$
Example

- **First Best = 100**
 - $\mu = 10$, $r = 10\%$, $\gamma = 12\%$, $\sigma = 8$, $L = 50$, $\lambda = 1$
- **Cash if $w > 56$**
 - $w^c = 56$
- **Gamble if $w < 40$**
 - $\rho = 2$, $\delta = 5\%$, $w^s = 40$, $D = 0$
- **Compare to pure cases**
 - Longer deferral of compensation
 - Greater use of credit line vs. debt (more financial slack)
Ex-Post Detection and Bonuses

• Suppose disaster states are observable
 • Earthquakes, Financial Crises, …
 • Can we avoid gambling by offering bonuses to survivors ex-post?

• How large a bonus?
 • If \(w_t \geq w^s \): no bonus is needed to provide incentives
 • If \(w_t < w^s \): increase \(w_t \) to \(w^s \) if firm survives disaster: \(b_t = w^s - w_t \)

• Bonus region
 • Contract dynamics: \(dw = [(\gamma + \delta) w - \delta w^s] dt + \lambda (dy - E[dy]) \)
 • Value function:
 \[
 (r + \delta) p^b = (\mu + \delta p^b(w^s)) + [(\gamma + \delta) w - \delta w^s] p^b' + \frac{1}{2} \lambda^2 \sigma^2 p^b''
 \]
 • Smooth pasting …
Optimal Bonuses

• Bonus payments:
 • substantially improve investor payoff
 • reduce need for deferred comp / financial slack / harsh penalties (no jumps)
• For low enough w_t, gambling is still optimal
Summary

• The double moral hazard problem is likely to be important in firms where risk-taking can be easily hidden
• Risk-taking is likely to take place
 • Probability of disaster is low
 • After a history of poor performance, when the agent has little “skin” left in the game
• As a result, optimal policies will have increased reliance on deferred compensation
• When the “safe” practices can be verified ex-post, we can mitigate risk-taking via bonuses
• When effort costs are convex, we should expect reductions in effort incentives as a means to limit risk-taking, with a jump to high powered incentives in the gambling region